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ABSTRACT

A nunber of theoretical calculations of the

moi-ion of a spherical underwater explosion bubble oscil-

lating in an incompressible homogeneous unbounded in-

viscid fluid are presented, using various "models" for

the behavior of the bubble interior. The purpose of

this study was to find an adequate representation for

use in axisymmetric calculations of underwater nuclear

explosion effects in which the bubble may become non-

spherical due to the effects of gravity and/or nearby

boundaries. The cases considered include (1) neglect-

ing the bubble atmosphere altogether; that is, tree a

the bubble as an evacuated cavity, (2) treating tae

bubble interior as an adiabatic homogeneous ideal gas,
but ignoring the inertial effects of the gas, (3) in-
cluding the gas inertial effects in the previous case,

(4) replacing the ideal gas behavior in case 2 with

equation-of-state data for real steam, and (5) revert-

ing to an ideal gas for simplicity, dropping the assump-

tion of bubble homogeneity; that is, the gas dynamics of

the bubble interior were followed by explicit numerical

integration of Euler's equations using a Lagrangian |

finite-difference computer code. Except for case 1,

the results were found to be virtually identical and in

good agreement tbth with experimental measurements and

with calculations performed by other investigators which

take into consideration the compressibility of the water

outside the bubble. I
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I • INTRODUCTION

Underwater explosion offects have boon the subject of

extensive study for many years, particularly since *-he beginning
of World War II. Most of the early research concerned the
characterization of the shock wave caused by the explosion "nd

its interaction with the water surface, the sea bottom, and
(especially) targets such as the hulls uf ships and submarines.

The effects of the shockwave may be felt at very larje distances

and occur on a very short time-scale due to the high speed of

sound in water. The late-timw cffacts of the explosion (that is,

the pulsation and migration of the residual "bubble" of gas,
its eruption from the surface, the resulting water waves, and

similar phenomena) received much less attention. This was, of
course, only natural, since the military importance of these

phenomena is usually relatively marginal for conventional under-
water ordnance.

When nuclear (and later, thermonuclear) explosives

were developed, however, the available energy release of under-

water weapons increased by several orders of magnitude. The

secondary late-time mass-motion effects consequently acquired
new significance, and therefore, in recent years, these effects

have been much more extensively studied than previously. One

of the effects of underwater nuclear explosions which immediately
contes to mind is that of the dispersal of the radioactive nuclear

deoris; tne transport of this residue from the point of burst to

the above-surface environment is governed by the late-time motion

of the steam bubble produced by the explosion. Another effect
of military significance, particularly for large explosions, is
thw generation of large water surface waves which aould pose a

serious threat to naval units or could even inundate a nearby

coastline.

The masa-motion effects of an underwater explos-on, as
compared to thuse of oc sowave, ar. fairly slow an ' Iutant,

7 Precedln page bliank
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After the emission of the shock, the hot gases formed by the

explosion expand; if the explosion is shallow enough, this gas
bubble may erupt from the water surface during the first expan-

sion. Otherwise, the bubble will expand to a maximum size, then

contract to a minimum size, re-expand, and continue to pulsate

with diminishing amplitude. At the same time, the bubble will

migrate upward toward the surface due to it buoyancy. For i

nuclear explosions, this bubble oscillation-migration phase

occurs on a time scale of several seconds as compared to milli-
seconds for shock wave effects, and therefore the motion is

virtually always subsonic. The eruption of the bubble from the

surface will hurl large masses of water aloft, releasing the

contained fission products, generating large suface waves that
thereafter propagate away from surface zero, and setting into

motion other familiar late-time explosion effects (the residual

upwelling along the explosion axis, the turbulent diffusiun of

the radioactive surface "pool", and so on).

Since the bubble pulsation, migration, plume eruption

and subsequent events are fairly slow-motion phenomena, the

water motion may be adequately teated as incompressible flow. L
Even so, however, the problem is in general at least two-dimen-

sior-1 (that is, axisymmetric) &id time dependnL, and involves |
ft-e surfaces. Therefore, the theretical treatment of the

motion is quite complicated, and consequently most of the inor- I I
tation available todAy has been collected by experimental mlans.

Recently, however, the development of modern high-speed third

generation digital comput-tJ has rendered purely thuoxetical

calculations of eiisymmetric buLble motion feaxible.

The MACYL6 hydrodynamic code (Pritchett, 1970a) was

designed specifically to compute the water motion around a

pulsating, migra.,-g explosion bubble, including late-time

plume oruption and bubsequent phenomena, by brute-force numerical

Integration using finite-difference tachniquts of the fundamental

covrrning equations of hydrodynamics in exisymmetric geometry. I

8!
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The computer program has been used successfully in the past to

compute the late-time flow after various underwater nuclear

explosions, and agreement with experimental results (where

available) has been good (see, for example, Pritchett and
Pestaner, 1969; Pritchett, 1970b; Pritchett, 1971). It is now

being put to use to study the formation of surface waves by

deep underwater nuclear explosions.

_n order to use the MACYL6 code to describe an under-

water explosion, however, the boundary conditions must be

specified; air pressure is, of course, imposed at the air-water
interface and remains constant with time. At the bubble-water

interface, a pressure must also be prescribed in some realistic

manner. That is, the MACYL6 code computes the flow in the water

surrounding the bubble, but the gas dynamics within the bubble

its,.lf must be "modelled" in some approximate fashion so as to

supply the required boundary pressure. In the calculations

published to date, the bubble pressure was assmued to be a func-
tion of bubb)e volume, and represents the equilibrium pressure

of an ideal gas undergoing adiabatic expansion and recompression.

In this report, various "moedls" of the explosion bubble interior

are examined to determine the extent to which various effects

alter the overall behavior, with the objective of evaluating the

error committed by adopting one or another of these models for

use in MACYL6 calculations. In all cases, the water outside the

bubble is considered inc.pre ble ax in th-c MCYL6 codA, and

the bubble is assumed to remain spherical throughout its motion.

A bubble-interior "model" which adequately describes a spherical

explosion bubble should describe the more general came equally
well.

Some of the explosion bubble models which will be

discussed in the subsequent sections have been investigated in

the past by other workers in the field. The "gaslese" case dis-

cussed in section V Ias been studied by many authors, among them

Lamb (1932), Willis (1941) and Cole (1948). The ideal gas model

9



of section VI has been treated by Friedman (1:47) and by Spay
and Christian (1952) at some length. Many of these early results

were, however, limited in precision since the solutions neces-

sarily involve extensive numerical integrations. Therefore, the

results presented herein were all computed quite accurately

using very finely-resolved numerical integration procedures on

a CDC-6600 computer. Furthermore, the results for aUl cases I i
are presented in a consistcnt way to facilitate comparison amongi
the various models of bubble behavior.

In the final section, the results of these calculations

are compared both with experimental measurements and with a few L.
compressible calculations of the water motion carried out by

other investigators; in general, the incompressible-water Ii i
approximation is seen to be good. Before proceeding to the

development of the various bubble model., however, the general I
phenomenology of underwater explosion, will be qualitatively

described.

1:
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Ii. FORMATION OF THE EXPLOSION BUBBLE

The detonation of a submerged explosive sets into

motion a complex sequence of events of which the cha:mcter
depends on the nature of the explosive, the energy released,

the depth of burst, and other environmental parameters. Nuclear

I explosions are of primary interest in this study, but mcot of
the experimental information available concerning underwater

I explosion effects was gathered using chemical explosives. There-
fore, in this discussion, both types of explosions will be

described, taking note of the differences in effects.

First, we will consider an uncased spherical charge of

conventional high-explosive (ouch as TNT) initiated at the center.
As the detonation front expands through the charge, the solid

explosive encompassed undergoes chemical reaction and releases
energy to further drive the detonation shock. The detonation

I wave speed is typically in the range 6000-7000 meters per
second for most explosives. Behind the detonation front, the

"burned" reaction products will include such materials as CO,

CO2 , H20, NO, CH4 and B2 as gases, and C, Pb, and AI203 as

solids. Ultimat.ely, of course, the detonation wave will reach

I. the charge surface and proceed into the water as a strong hydro-

dynamic shock wave at which time tho chemical reactions will be
[complete. For a given explosive type and packing density, the

total energy released by the explosion will be proportional to

Ithe charge massI that iss

where

Y - yieldy total explosion energy

I o  charge radius

. .. . -- _
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PE = explosive packing density

Q - chemical energy released per unit explosive
mass.

Furthermore, the "reaction time" (time required for the detona-

tion process) will depend on the charge size and th.. detonation

wave speed;

RO 3Y 1/3 (12
R - U I

det LW0ECdet (II-2)

For TNT, for example, a typical packing density is about 1500

kg/m3 (that is, a specific gravity of 1.5) and 0 is approximately h
4.2 x 106 joules/kg. Therefore, a spherical TNT charge with an
energy release of one kiloton (defined as 1012 calories or about

4.2 x 1012 joules) would be about 10.9 meters in diameter, and the

total reaction time would be slightly less than one millixecond

(see Figure 1).
I

Initially, the shock propagated into the water contains IL
about half the explosion energy; the remainder resides as both

kinetic energy associated with the expansion of the gaseous

"bubble" of reaction products, and as !nternal energy (heat)

within the explosion products themselves. This shock travels

away rapidly, deelining in strength. Near the original charge

position, the highly non-linear behavior of the shock causes

energy dissipation as heat to the water. o)nce the shock is

about 10 or 15 charge radii from the origin, however, this

dissipation process is largely complete; the shock thereafter

continues to travel away carrying with it about one-fourth of

the origiial explosion energy (see Figure 2). The time interval I
from the moment of explosion to the end of this "dissipation"

phase (defined for our purposes as the moment when the shock

has propagated 10 charge radii) is still fairly short, but is

about 25 times greater than the "reaction time". I

12I3
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The difference between the effects of a chemical
underwater explosion, such as described above, and those of a

nuclear or thermonuclear explosion arise from both the (usually)
higher yield in the nuclear case ar-d the far higher initial

explosion energy density. The nuclear reactions may be regarded
as essentially instantaneous; the materials which comprise the

I nuclear device (largely metals, along with the reaction pro-
ducts of the high-explosive stage, any unburned nuclear fuel,

I and the radioactive nuclear reaction products) are raised to
extremely high temperatures and ionized. The earliest energy
transfer mechanism to the surrounding water mass is therefore

radiation; since water is opaque to bomb-teanperature photons
(the mean free path is only a centimeter or so), this radiation

1o transfer process may be adequately described as "radiation
diffusion". The resulting high pressure region then forms an

I extremely strong hydrodynamic shook wave which expands, encom-
passing more and more water and raising its entropy. Near the

Iburst point, the internal energy increase per unit mass imparted
to the water is stifficient that, upon expansion, the water will
vaporize. This internal energy jump declines as the shock

strength decreases due to its increase in surface area, however,
and therefore the shock front energy density eventually becomesI low enough that no further water will be vaporived. It turns
out that this separation between the shock front and the bubble

J front occurs at a radius roughly equal to that of a Opherical

TNT charge of the same eneray release ae the nuclear a--plosivA.
Thus, at this stage, we have a physical situation not entirely
unlike that of the high explosive burst at the noment when the
detonation wave reaches the charge surface. The shock wave will

thereafter continue to propagate outward, dissipating energy as
heat at close-in distances, and rapidly beomaing waker, shailar

I_ to the high-explosive case. A nuclear explosion leaves about
40 of its energy behind as "initial bubble eneryi most of the

j remainder is shockwave energy (of which a portion is dissipated
near the burst point) and a relatively mall fraction remains
as energy to be released later by the decay of the radioactive

1 15



fission products. This may be compared with the 47-53% energy

partition between the "bubble" and the primary shockwave for

TNT (Cole, 1949); for most conventional high-explosives, the

bubble energy fraction is between 40% and 60%. The difference

between the high-explosive and nuclear cases is, of course, that

the interior "atmosphere" of the bubble produced by a conven-

tional underwater explosion is Initially roughly homogeneous

and is composed of the gaseous reaction products of the charge,

whereas in the nuclear case the bubble atmosphere consists of it

steam and is non-homogeneous, being much hotter at the center

than at the periphery.

!I

Ii

Ii

Ii

Ii
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III. DESCRIPTION OF BUBBLE PULSATI)N

I By the end of the dissipation phaso, the uhockwave
has propagated well away from the "initial bubble" which con-
slats in the convention&3 high explosive case of the charge's
reaction products and in the nuclear case of the "potential
steam" discussed above. After this point, there is a marked
qualitative similarity between the two cases. If the explo-
sion is sufficiently shallow, uf course, the bubble's expanaion
will rupture the surface, throwing up a hollow vertical column
of water, and violently expelling the bubble contents into
the atmosphere. A typical example of this sort of explosion
is the familiar CROSSROADS-BAKER nuclear test of 1946. For
deeper explosions, however, the bubble will not vent into the
air, but will continue to expand, at first rapidly, and thenL_ more and more slowly. The internal pressure and temperature
will, of course, drop during this expansion, and at sa pointj the average internal pressure will become equal to the ambient
hydrostatic pressure at the burst depth. The momentum of the
watsi: rushing away from the point of burst wi ll, however, carry
the expansion even flurther. Eventually, the expansion will be
brought to a halt by the hydrostatic pressure, and the bubble
will begin to collapse. The interface will move inward with
ever-increasing speed and recompression of the bubble atmosphere
will occur until the motion is once again brought to a halt by
the high internal pressure; thereafter, the bubble will re-
expand arwi tho %-+le process will be repeated. The reversal of
the motion at the bubble "minimum" is so abrupt as to appear
discontinuous on a time scale appropriate for the expansion-
contraction cycle as a whole. On the other hand, the motion
near the "maximum" is, relatively speaking, extremely smooth
and leisurely; the bubble radius is more than half the value
at the bubble maximum for over 900 of the period of oscillation.

During most of the expansion-contraction cycle, there
is little opportunity for energy exchange between the bubble

I 17
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interior and the surrounding water. Over the time periods in

question, heat conduction across the bubble boundary will be I

entirely negligible, and hence the bubble atmosphere's expansion

and recompression may be taken as adiabatic. Furthermore, a I
one-kiloton nuclear explosion at a burst depth of 100 meters,
for exar.ple, will generate a steam bubble whose radius, at

maximum expansion, is about 65 meters and whose period of !
oscillation is about 3.8 seconds. Thus, it can be seen that

the bubble-pulsation effect is a relatively slow-motion I
phenomenon and is confined to a fairly small region of

space, compared to the more familiar effects of the shock wave. I
An overall "characteristic velocity" for the oscillation may

be taken as simply the maximum radius divided by the period of

oscillation, or about 17 meters/second in the above typical case. L

This is two orders of magnitude smaller than the speed of sound

in water, and consequently the water motion may be adequately '

treated as incompressible over most of the bubble cycle.

Near '.he bubble minimum, on the other hand, the

assumptions of water incompressibility and adiabatic gas behavior j.
begin to break down. First, very close to the minimum, the water

velocities adjacent to the bubble interface become very high, U
na .;Call- prassure pulse is radite*d away from the bubble,

carrying with it a few percent of the bubble's pulsation energy.
This "bubble pulse" is somewhat broader but is much lower in i
amplitude than t;e primary shockwave. Second (and much more

important), at the minimum, Taylor instability occurs at the L
water-bubble interface. This instability is that of capillary

waves on the bubble surfacer thus, the size of the perturbations [
is quite small compared to the bubble size even at its miniun,

and furthermore, the instability is a fully three-dimensional

phenomenon. The resulting interface breakdown causes the forma-

tion of a spray of water droplets which penetrate the bubble,

cooling its interior. If the explosion is nuclear, this cooling I
will cause condensation of a portion of the steam atmosphere,

1I
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thereby causing an additional energy los. Finally, the in-
stability of the interface initiates the development of intense
turbulence adjacent to the bubble, and the energy of this turbu-
lence is, of course, derived from bubble energy. Thus, the second

cycle of oscillation is weaker than the first, and each subsequent
oscillation is damped even further. Experimentel measurements
have shown that if the bubble does not migrate upward appreciably
due to gravity, the bubble energy available for the second cycle
of oscillation is about 400 of that of the first in the high-
explosive easel the second cycle energy of a steam bubble,
with its condensible atmosphere, is only about 8% of the first

cycle energy under the same circumstancew. In the high-explosive

case, the bubble may experience as many an eight or ten oscilla-
tion. before becoming relatively inertl in the nuclear case,
howaver, the steam bubble will generally condense aw.ay completely

at the end of the third cycle. This behavior is illustrated in
Figure 3.

19

- --- - -- -



_2

-Nuclear

/ .. High-ExplosivetI
I \ I ,, i

I0

"___ ____\___ __ __ __ __ __ __ __ __ /_ __ __Ii

00 TIME AFTER BURST

FIGURE 31 THE EFFECTS OF 
BUBBLE ENERGY LOSS - THE I j

NON-MIGRATING CASE

LF

Ii1-

12

I 20 
1

Lo



J

IV. TWO-DIMENSIONAL EFFECTS

So far, it has been tacitly assumed that the bubble

remains spherical in form and that its center does not move

significantly during the motion. For most cases of interest,

however, these assumptions are not entirely valid. As has been

mentioned, if the explosion is shallow enough, the bubble may
rupture the surface early in its expansion and expel its con-

tents into the atmosphere. Furthermore, even if the explosion
is well underwater, if it occurs sufficiently close to (or,

particularly, in contact with) the sea bed, the motion would

be expected to be influenced by this solid boundary. Therefore,

in either of these cases, the motion is not one-dimensional

(that is, the state of the system is not definable at a parti-

cular time in terms of the distance from the burst point alone)
but is axisymmetric (requiring two space coordinates, r in the
radial direction from the vertical axis of symmetry, and z,

the altitude).

Even if the explosion is deep enough that the surface

is not ruptured, and far enough from the sea-floor that the

presence of this boundary does not significantly influence the

flow, the bubble motion, in general, will still not be one-
dimensional. The reason for this is the effect of gravity; that

is, the buoyancy of the bubble. As a consequence of this buoy-

ancy, the bubble will tend to float upward toward the watir
surface as it pulsates. The instantaneous buoyant force is

given by Archimedes' principle:

Fb - (Ow - pg)gV (IV-l)

where

Pw - density of water (constant)

Pg a density of bubble interior

21



g - acceleration of gravity (constant) I
V - bubble volume.

The upward momentum generated by buoyancy up to a time t* is

therefore simply:

I g (Pw - Pg )V dt (IV-2)

During most of the bubble cycle, when V is large, P (the gas

density) will be orders of magnitude smaller than pw. There-

fore, for our purposes, we may say: i
1= Pg V dt (IV-3)

0i

This momentum is accumulated with time as the motion proceeds.

Near bubble maxima, when V is large, momentum is accumulated

most rapidly. The "hydrodynamic mass" or "mass of moving

water" is, however, also very near maxima. At the iitst minimum, J
on thG other hand, the "hydrodynamic mass" is small, but f
pospesses all the upward momentum accumulated during the first

cycle, that is,

I =pwg T V dt = 4 7pwg J Rsdt (IV-4)
o o

where T is the first osc llation period and R is the bubble I
radius. Therefore, the overall upward velocity is greatest at

bubble minima.

The volume-time integral for the first bubble cycle

in equation (IV-4) may be taken as simply proportional to the

volume at the maximum times the oscillation period, for a pre-

scribed radius-time curve:

' I

22
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where Rmax is the first maximum buLble radius, and the coeffi-

cient of proportionality B depends upon the exact shtp. of the

radius-time relation for the bubble oscillation. If a "charac-
teristic momentum" for the bubble oscillation is defined as:

4 I %ax --- (IV-6)

the upward "buoyant" momentum may be normalized and presented

in dimensionless form:

I* - 9 (IV-7)

which will be recognized as a reciprocal Froude number (increasing
with increasina relative buoyancy effect). That is, two explo-

sions which produce bubbles such that that quantity I* is the

same will experience the same relative upward migration due to

gravity, during the first cycle. Clearly, therefore, the quantity j
B (which is a measure of the shape of the radius-time curve) is
an important parameter in the study of underwater explosion bubble

pulsation.

It has long been recognized experimentally that if

migration is strong (that is, if I* is large), the bubble,

while initially spherical, will become more and more non-

spherical as the motion proceeds. After the first maximum, the
bubble bottom will tend to collapse back toward the explosion

point more quickly than does the top, thereby generating an

upward central jet of water which collides with the bubble top

just prior to the moment of maximum recompression. Therefore,

at the minimum, the bubble is toroidal rather than spherical in
form. If the migration strength is sufficiently great, the
bubble may remain toroidal thereafteri otherwise, the central
jet will dissipate upon re-expansion but may re-form at sub-
sequent minima. Por very strongly migrating bubbles, the net

upward displacement by the end of the first bubble cycle may
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be comparable to the first maximum bubble radius.

The MACYL6 hydrodynamic code (Pritchett, 1970a), although i
fairly general in application, was specifically designed to deter-

mine the bubble motion and associated phenomena following deep

underwater explosions. The MACYL6 code is a computer program fo-

solving viscous turbulent time-dependent incompressible axisym- I
metric fluid flows involving free surfaces. The fundamental A
ensemble-averaged Navier-Stokes equations which govern all such

flows are numerically integrated using finite-difference methods

on an Eulerian mesh of computational grid points. Free surfaces I
are treated using the MAC ("Marker-and-Cell") technique first

developed by Welch, Harlow, Shannon and Daly (1966) at Los Alamos.

In this procedure, the fluid is "tagged" with a large number of I
massless "marker particles" which are moved with the flow through

the Eulerian mesh at each time step using velocities interpolated j
from nearby principal grid points. These marker particles there-
by delineate the positions of the free surfaces. A heuristic

model to determine the effects of turbulence. was developed
separately (Gawain and Pritchett, 1970) and is an integral part

of the overall procedure. For application to the underwater I
nuclear explosion problem, the fluid is taken as initially at

rest and the water surface is horizontal, but one or two "empty" L

cells at the explosion point contain a high internal pressure. j
The co4e then calculates the subsequent water flow in a stcpwise L

fashicn using the finite-differenc? forms of the governing equa-

tions and, as boundary conditions, the fact that the air pressure

is constant and that the bubble internal presbuze is a prescribed

function of bubble volume. For all such calculations published I
to date, the bubble pressure - volume relation for a particular t

cycle of oscillation was assumed to be that of the adiabatic

rarefraction and recompression of an ideal gas with y (the ratio 1
of specific heats) equal co 4/3, that is,

PV4/ 3 - constant (XV-8)

I
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As was discussed in section III, although the bubble's

expansion and recompression may be taken as adiabatic during

most of the oscillation cycle, energy is lost near the bubble

minimum due to two fundamental causes. First, near the minimum,

a weak pressure wave (often called the "bubble pulse" to dis-

tinguish it from the primary shockwave) is emitted from the

bubble and carries away a small fraction of the bubble energy.
This occ rs due to the compressibility of water; near the

minimum, the bubble interface velocity may instantaneously become
comparable with the speed of sound in water, even though over the

remainder of the pulsation velocities are far below sound speed.

Second, the reversal of the motion at the minimum causes Taylor

instability of the bubble-water intorface, which generates intense

turbulence in the water adjacent to the bubble and causes the
breakdown of the interface into spray, which in turn cools the

bubble interior and (for nuclear explosions) causes condensation

of a fraction of the steam interior. This instability is, how-

ever, a fully three-dimensional phenomenon and the scale of size

of the perturbations (i.e., the spray droplets) is far smaller

than the bubble itself. It therefore seems clear that an incom-

pressible spherically symetric or axisymnetric treatment of the
water motion cannot possibly predict the energy loss at the bubble
minimum. Fortunately, there is no particular requirement for such

predictions; the fractions of the bubble energy lost at each

minimum have been determined experimentally and have been presented

by Phillips and Snay (1968) for steam bubbles and by §nay (1952)
for tne conventional high-explosive case. It turns out that the

fraction of the bubble energy lost at the bubble minimum declines,

in general, with increasing migration strength. In the )ACYL6
code, the constant in equation (IV-8) is adjusted downward at each

bubble minimum in such a way that the fractions of the bubble

energy lo3t at each minimum correspond to Snay's empirical resultsp
thus, the decay of the bubble oscillation with time is properly

reproduced in the calculations.
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An earliez version of this code has been used with

conviderable success in the calculation of the bubble motion I
after the WIGWAM deep underwater nuclear explosion test of

1955 (Pritchett and Pestaner, 1969). The MACYL6 code itself has

been used more recently to compute the bubble motion and subsequent i
flow after extremely deep underwater nuclear bursts out to several

minutes after detonation (Pritchett, 1971) and is now being used J
to study the formation of surface waves by relatively shallow

huclear explosions. As was seen above, however, the MACYL6 code

actually computes only the water flow outside the explosion
bubble; the gas dynamics of the bubble interior are represented

only in an approximate way (such as by equation IV-8). Although t
this procedure has been quite successful at accurately computing

bubble motion (Pice, 1970b), it is certainly worthwhile to

investigate the adequacy of assumptions such as (IV-8), so as to

ascertain whether or not an improved "bubble interior model" can

be formulated which will significantly improve the results. For
this purpose, however, it is not necessary to make fully two- f|

dimensional (that is, axisymmetric) calculations. If the one- |

dimensional case can be adequately treated using a particular

"model" for the bubble interior, the two-dimensional case in which I;

the bubble may become non-spherical will also be adequately dea-

cribed by the same sort of model. U

Therefore, we will consider the case of an explosion in 11

an unbounded iras of watcr in which the ambiGnt hydrostatic presrure

is everywhere the same. The effects of viscosity (which, in

reality, are exceedingly small) will be neglected, and furthermore,

the water outside the bubble will be considered inoompressible.
As was inferred in the previous discussion, thin assumption is L
valid except for very brief time intervals near the bubble minima.

In any case, the objective of this study is to determine optimum

procedures for representing the effects of the bubble interior

in the HACYL6 code, and MACYL6 treats the water in the incompres-

sible approximation.
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V. SOLUTIONS NEGLECTING THE BUBBLE ATMOSPHERE

The first (and most primitive) model for the bubble

interior which will be considered is that there is no bubble

atmosphere at all; that is, that the motion bL.g4ns with water

rushing away trom an infinitesimal point forming an evacuated

I cavity. To derive the governing equations for the resulting
motion, we first impose Euler's momentum conservation equation

I for an incompressible fluid in spherically symmetric motion:

au 1 a (r2u2) 1 ap. (V-i)

Ir
where

u = radial velocity
r - distance from origin

P P-pressure

Pw = fluid density (constant), and
t - time.

Furthermore, the continuity condition is%

1 a (r2u) - 0 (V-2)

n tIf at a particular time the radiu0 of the blibblt is
denoted by R and its instantaneous velocity of expansion in R

the velocity elsewhere in the water is just:

I u R(R/r) 2  for R V-3)

as can be seen from the above continuity oondition. Inserting
this result into the momentum equation, we immediately obtaint

!)2 + 2--P.-- 2 P4 +w " cv- 1 a 0W

Ir r2  dr
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(It2

as the governing equation.

To eliminate pressure, we try a solution of the form:

pa a2  a3  a4  ,-w= a 0 + -- + -- - .-- (V-5) :
Pw 0 r r 2  r' I '

so that:

1 - P a1  2a2  3a3  4a4  (V-6)

war r r3  rI r

Substituting the above into the governing equation (V-4), we

obtains

a- R R + 2 k2R

8 2 -a 3 -

a4 -- R (V-7)

and therefore:

p 0 R '!2+22 RR 2 R

w r r 2r4

Now, at r - , the pressure in simply the hydrostatic

pressure, PH

P P H at r- (V-9)

and thus: I
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a0 "I
Therefore, the pressure field is given by:

SP PH + pW(-- 2*2 R R)(V-Il)

P-PH +Pw (r 42 r W-11"2r4

If we define the instantaneous pressure at the bubble-water

interface as PB we may evaluate the above equation at r - R

to obtain an equation of motion for the bubble:

R OWN- R (V-12)

Now, if the bubble atmosphere is ignored, the bubble

pressure PB is always zero; thus, finally, we obtain:

=+- 3 - )W-13)pwR  Y!

I. It is also feasible to derive the governing equation
from the energy principle. The total energy in the system re-

I mains constant, and is composed of two terms; the kinetic energy
of the moving water, and the total work done against external

I. forces (in this case, the hydrostatic pressure);

I E0  EK + W (V-14)

The total kinetic energy may be evaluated byti
- P J U'dv - 2rP~ J' r2u2dr WV-15)

Using the continuity condition (equation V-3 above), this becomess

EK 2w rR2 J dr

ST 2R (V-16)
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The work done against hydrostatic pressure to expand the bubble

from radius Ro to radius R is simply:

JR
W= PH Hdd

--.

where A is the instantaneous bubble area, oX:

W 47rP j R dR

In the present case, the bubble starts from zero radius, and 4

therefore the total work done is just: t
6

Therefore, the energy equation becomes: (l

EO= 2-Pw k2 R3 + 1TPia R3v-19, )
0

If this equation is differentiated with respect to time, theresult is: I

0~iI R~' 6i i 3 2 + rPR 2

0 - 4w R R R4 + 67pw R + 4vPH'

which may be solved algebraically for R:["I. I
r DH

HPI7i w
which is identical to the governing equation derived from the

momentum principle (equation V-13).

A special case of t-he "gasless" bubble solution is that

which is obtained if the hydrostatic presoure is ignoredT that is,

in terms of energy equation, the kinetic eneray remains constant:
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E0 W 2rP w i2R' (V-20)

for which the solution may be obtained analytically:

25Eoi 1/5 . (

In this case, the bubble radius increases monotonically with

time, and no bubble pulsation occurs due to the absence of hydro-
static pressure. This result is approximately valid at early

times, but becomes worse and worse as the bubble grows and the

work done against hydrostatic pressure becomes an important term
in the bubble energy balance.

This case is interesting, however, in that it permits a

rough estimate of the adequacy of the incompretsible assumption.

The error may be estimated as being of the order of the square of
the Mach number based upon the interface velocity, which may be

shown from (v -21) to be:

2 ~1 (V-22)P- wRSC2 WL
where C is the speed of sound in water. This quantity is plotted

in Figure 4 for the one-kiloton case discussed earlier; as can

be seen, at a radius corresponding to the TNT-equivalent charge

radius, the local Mach number is significantly less than unity. j
similarly, the square of the locai Mach number as a function of

time is:
M2 4 25 2/5 (v/5"2s WP. ( zo m )  X t - /  (V-23)

2 5C2 81w

which is plotted for a one-kiloton explosion in Figure 5. The

incompressible approximation is clearly wr-ranted after about 5
or 10 millisecondsj the overall oscillation period of the explo-

sion bubble is several seconds. Therefore, these results tend to

support the conclusion drawn earlier than the water flow around

the bubble may be adequately treated as incompressible motion.
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If the hydrostatic pressure is non-zero, of course, the

bubble will not expand indefinitely, but will oscillate in size.

If a "reduced radius" and "reduced time" are defined as follows:

A * R () 1/3 (V-24)
E0

T t H5/6 (V-25)

Ow 1/2 0 T

and these variables substituted into equation V-19, the energy

equation may be written in dimensionless farm: Ii

2lA*2 XS+ iT~-1(V-25)

where

dA

As can be seen, the maximum radius of the bubble will occur when f
the bubble interface velocity is zero:

1/3l'

A - (4-1) - 0.620 (V-26)

or, in dimensional form,

where 0.620 (:) (V-27)

where

A - maximum dimonsionless radius A L
RPM - maximum bubble radius

E - bubble energy (about half the total explosion
energy)

=H - hydrostatic pressure I

The energy equation (V-.5) may be integrated numerically:

the resulting dimensionless radius-time relation is illustrated in

34
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Figure 6. The relative contributions of the kinetic and internal

energy terms to the total ener7y as functions of time are shown

in Figure 7. As is to be expected from the form of equation V-25,
the solution is symmettic around the time of the bubble maximum

and there exist periodic singular discontinuities corresponding in
ti:ne to the bubble minima. The period of the oscillation in dimen-

sionless form is:

6T - 1.135 (V-28)

or, in dimensional form,
1/2 1/3 5/6

T - 1.135 p w  Eo /P H (V-29)

where 6T is the T interval between successive zeroes of A, and T

is the corresponding dimensional period of oscillation.

Another quantity of interest which has been discussed

previously is the "characteristic velocity" associated with the

bubble oscillation. This may be taken as:

Uc - mX/T (V-30)

which, using V-27 and V-29, becomes:

A P1, 1/2 (v311

Uc - z )

so that the corresponding dimensionless parameter is:

u " A/6T - 0.547 (V-32)

Therefore, the "characteristic velocity" is indepeadent

of the explosion yield, and depends only on the hydrostatic pressure,
which in turn depends on the depth of the explosion (the water

density pw is assumed constant). Numerically, this characturistic

35
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FIGURE 6: THE GASLESS MODEL -THE DIMENSIONLESS BUBBLE RADIUS-
TIME RELATION
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velocity is fairly low, as discussed in section III, and is far

below the speed of sound. Typical values for various explosion
depths, assuming that pw W 1000 kg/m 3 , g - 9.9 m/see , and that
the air pressure over the water is one atmosphere (1.013 x 105

newtons/m 2 ) are listed in the following table:

Burst Depth Characteristic Velocity Square of Overall
(Meters) (Meters/Sec) Mach Number

10 7.7 2.7 x 10- 5

30 10.9 5.3 x 10 - 5

100 18.0 1.4 x 10 - 4

300 30.2 4.1 x 10' 4

1000 54.5 1.3 x 10 - 3

3000 94.1 3.9 X 10- 3

Thus it seems clear that water compressibility effects are not
important, even for explosions at very great depths.

One other parameter required for the proper description

of the bubble oscillation is the quantity B, which is needed to
determine the upward momentum generated by the bubble due to

buoyancy. b is defined as (see equation IV-5):

R'ltldt X T) adt
o o

RaxT A'6T

The upward momentum generated by the bubble during the first

cycle of oscillation in normalized form is (see equation IV-7)s

I* BT

and the value of B obtained from the integration of the energy

equation is:

B - 0.625.
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The very nature of the governing equation for this

relatively simple case assures that the radius-time relation

which results is a universal function. In the more complicated

treatments considered in the next few sections, the radius-time

relation will be found to depend on various parameters, so that

the constants which characterize the radius-time function, that is,

A - 0.620 (7-33)

6T - 1.135 (V-34)

0.547, and (V-35) Ii

B = 0.625 (V-36) '

will become functions of those parameters. In general, however,

the same system of nomenclature will be retained, so that results

may be readily compared with the present case.

Li
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VI. THE IDEAL GAS MODEL

In the case just dircumsed, the internal pressure of

the bubble was approximated as zero. The bubble pressure is,
in fact, low compared to hydrostatic pressure during most of

the bubble cycle. None the loss, it seems clear that the
{1 solution could be improved if some plausible method were used

to simulate the effects of the gas inside the bubble.

In particular, if we begin with a sphere of compressed

ideal gas with volume V0 and with the fluid initially at rest,

the gas internal pressure may be defined by:

P PV Y - PoV*Y = constant (VI-1)

B 0 0

that is, an adiabatic expansion. Here, P3 is the pressure

associated with bubble volume V, and P0 is the initial pressurej

y (the ratio of specific beats) characterizes the gas. Further-
more, it will be assumed that the gas remains homogeneously dis-

tributed within the bubble throughout the motion, and therefore:

u -r for r < R (VI-2)

As before, of course, the velocity field outside the bubble is:

u-A (1)2 for r > R (VX-3)

If the initial density of the gas is denoted by p., then the
ga density inside the bubble at any time is:

R
P - 0 E (j) for r < R (VI-4)

and, of courte, the watea isnsity is:

PW constant for r > R (VI-5)
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Th, energy balance now consists of four components:

EKG + EKW + EI + W - constant [VI-6) IL

that in, the kinetic energy of the expanding gas, the water

kinetic energy, the internal (heat) energy of the bubble atmos-

pher6 and the work done against hydrostatic pressure. Two of

these have already been worked out (see equations V-15 through

V-17) :

EKW 2 tp. RRD (VI-7) p
KW s

w - 4 rP '-RS) (VI-8) ii

The gas kinetic energy is just:

3KG - guldv

bubble
interior

- ZirP a f r dr

- T9 R2 0

£
4nd, using equation (VI-4)

M25 ff IP zR~ MVI- 9) 1
The internal energy of the gas is simply: I

PV T (VI-lO)I

Inserting (VI-l), this may be written: 3
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Initially, the system is at rest and no work has yet

been dons against external forces. Therefore, the total energy
at t - 0 (the conetant on the right in equation VI-6) is just

the total internal energy initially present:

PoVo

E (VI-12)EI - T71 - "KG EKW + EI +W V-2

The bubble oscillation energy E is just the amount by which

the initial internal energy exceeds the internal energy required

to maintain the bubble against the ambient hydrostatic pressure:

P HV
E0ME - Ho

(P -P )Va w
4 T (Po-P )R RI (VI-13)

Thus, for example, if the bubble oscillation energy E0 were
zero, the initial bubble pressure would equal hydrostatic

pressure and no motion would occur. The energy equation may

now be expressed explicitly be assembling equations VI-7, -8,

-9, -i1, -12, and -13:

4-f Po Rly

~ H 0R- ~ ~ -~

which may be compared with the energy equation for the previous
"gaslessm case (V-19). The corresponding momentum equation is
simply (compare to V-13)i
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w - (VI-15)

Making use of (VX-1) and (VI-4), this becomes
.. R Sy -

(Pr 3
1 ~~ a1(0

2 ] - P k Aj

(1 +(VI-16)

The terms involving PE reflect the inertial effects

of the gas inside the bubble. For example, the ratio of the
gas kinetic energy to that of the water is:

EKG . 1 E () (VI-17)
E-KW 5 PwREl

For nuclear explosions, of course, the initial bubble density
(PE) would be taken as the same as that of water (Pw). Even
for high explosives, (PE/Pw] will rarely exceed 1.6 or so. I
Furthermore, over most of the bubble oscillation, R is vastly

greater than Ro . Therefore, it would seem warranted at this

stage to neglect gas inertial effects; the effect of this 1
approximation will be examined later in this section.

If all terms involving tae gas density are neglected,
thc anargy equation becomes: I

Ru2rrR ° s (Y-3)Eo,.2vr w k'R +. [ " (PO VF) -PH)

+ P - (V-1,)

and, for the momentum equation:

% Y 3
"€ " i- I-- -) 3

4I
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If the governing equation is non-dimensionalized in

the same way as was done in the previous section for the

evacuated bubble case by the introduction of the dimensionless

bubble radius (M) and the dimensionless time (T), defined by:

E 1/3
R X (-S)- H

E 1/3
w W

the energy equation becomes:

2r 2'+ I 1TIr{4 [ +
~1

- .Xwi ~~l- 1V1-20)

which may be compared to equation (V-25) for the "gailess"

case. The bubble energy is just: -1
(Po-PH )V o (Po-P ) R9

0 " H-1 o - r -1 0 (VI-21) :i
or, in divensionless form,

or--. H1VI-22)So I 4 P -

which may be used to eliminate X0 from the energy equation. To

facilitate presentation, we define:

Eo- (VI-23)
0

which, for the ideal gas case under discussion, is simply:

Po-P F
0 (l (VI-24)
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Th hysical significance of C is that it is tht. ratio of the

bubble energy to the work required to form the initial cavity

-of radius Ro agaiinst hydrostatic pressure PH" I'hus, 4 may be

i--aided aa a measjre of the "relative intens.-.zy" of the

explosion, or, fox a given explosive type, as inversely pro-

portional to thw hydrostatic pressure, which in turn varies

%ith the birst depth. In particular, the range of interest of

can be estimated by using TNT as a standard explosive and taking

note of thu fact that the initial bubble energy density for TNT
is about 3 X 10 joules/m3 . Thereby, the following values of C

may be correlatud (approximately) with explosion depth as

follows?

4Depth (eters)

100 3000

300 1000

1000 300

2000 90

10000 20

Actually, as will be ceen later on, eve. higher values of

are of souie interest, since much of the experimental information

concerning hubbla pulsati- ,i s collected in labordtory-scale

test cha~mbera in which a vac .r. was drawn over the water to 1i m
further reduce nydrost. :i. asure (see for exwnple, Buntze.,

19E41  ni, 1964; Pritchett, 1966). Thus, the range of variation
In 4 could extend from abo-%t 100 to as hiqh as 100,000.

By use oi (/I-22) and (VI-24), the dimensionless energy

e -uatiori (VI-20) may be written as follows:

(VI-24)

As can be sen, the solution is no lor,(geL a universal funztioi
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as was true in the "gasless" case discussed in section V, but is

a family of functions which depend on the values of the charac-

teristic parameteLs y (which characterizes the gas) and 4 (which

can roughly be correlated with explosion depth).

Equation (VI-24) was numerically integrated, using a

large digital computer, for values of y varying between 1.1 and 1.5,

and for C ranging from 100 to 100,000. Qualitatively, the radius-

time zelations obtained were quite similar to that of the "gasless"

case discussed in section V; the result for y - 4/3 and C - 3000

is illustrated in Figure S. The relative contributions of the

various terms in the energy equation as functions of time for this

casa are shown in Figure 9. The principal qualitative distinction

between the two cases is that the bubble radius does not drop to

zero at minima. Quantitatively, however, the constants which

characterized the motion in the gasless case (reduced maximum

radius A - 0.620; raduced period 6T - 1.1351 reduced velocity

P 0.547; "shape constant" B - 0.625) are, in the present case,

functions of both y and C. Contour plots of these functions are

to ba found in Figures 10 through 13. The reduced maximum rad-us

A is always (as might be expected) less than that in the gasless

case, and decreases with decreasing y and/or . The bubble

period, on the other hand, nwy be either greater or less than in

the gasless case; the characteristic velocity P( - A/6T) is there-

fore lower than the gasless value ov , at of the range consiaered,

Lut is slightiy larger zor large values of y &nd of r. The range

of variation of A, 6T, and p over the range of interest is consider-

able; about 17%, 9%, and 121, respectively. On the other hand,

the "shape parameterO B is fairly insensitive to variations In Y

and/or 4; the oveiill range is only about 3%.

In order to evaluate the error caused by neglectirng the

inertial effects of the qas, tha same calculations were tran

repeated, out using the .zn-dimansiunal form of equations (VI-14)

ar.d (VI-" rather than (VI-le) _ nd ,V .l,9) and sottinr P (t e
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FIGURE 8: THE IDEAL GAS MODEL - THE DIMENSIONLESS RADIUS-TIME I

RELATION FOR y - 4/3 AND RELATIVE INTENSITY C - 3000
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initial gas density) tqual to pw (the density of water). The

results were almost identical to the previous case, as shown

in Figures 14 and 15. Figure 14 is a contour plot of the per-

centage deviaticn in v between the two cases and Figure 15 that

in B. Both V and B were consistently lower than the results
obtained using pE w 0, but the deviations themselves were only

fractions of a percent. An examination of the energy equation

(VI-14) revea&s, furthermore, that the maximum bubble radius

is independent of PE, since the interface velocity R is zero

at the bubble maximum. Thus, there is no difference in A between

the two cases, and hence the deviation in p (which is just A/6T)

shown in Figure 14 is also equal, numerically, to the deviation

in (1/6T).

As these results shown, the error in u and B is

almost independent of y and depends principally on C, the

relative intensity of the explosion. For explosions at "reason-

able" burst depths (that is, C - 1000 or more), the deviations

are less than one-tenth of one percenti even considering the

entire range down to C - 100, the doviations are generally less

than l. Therefore, the postulate wade earlier that tie
inertial effects of the bubble atmosphere do not signiticantly

affect the overall motion appears to be verified.
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VII. REAL-STEAM EFFECTS

In the previous section, the bubble atmosphere was

treated as a homogeneous ideal gas, and the bubble pulsation

effects were found to depend weakly upon y (the ratio of speci-

fic heats for the ideal gas) and C (the explosion intensity).

It was also shown that the inertial effects of the bubble atmos-

phere are negligible over the range of interest of these para-

meters. In reality, of course, the bubble atmosphere is not

an ideal gas; therefore, in this section, the effect of imposing

a more realistic equation of state will be examined.

Once again, we will consider the motion of a homogen-

eous sphere of gas which is initially at high pressure oscil-

lating in an incompressible fluid. The governing momentum

equation for the motion is therefore the same as used previously

(see equations V-12 and VI-14):

9 (3-H 3 j2) (VII -1)

This equation may readily be integrated numerically if the

relationship between bubble pressure (PB) "nd bubble volume

is known. In aection V, it was assumed that the bubble pressure

was always identically saro; in section VI, the adiabatic

expansion of an ideal gas was used as tha modal for P 3 . In

order to improve the treatment still further for the nuclear

case, the equation of state data fr H2 0 collected by Bjork,

Kreyenhagen, and Wagner (1969) was used.

As was done in section V1, the bubble is taken as

homogeneous, the motion starts from rest, and the expansion is

assumed to be adiabatic and isntropic. The initial state

was taken as that corresponding to the injection of the bubble

energy (E0 ) into a spherical volume of water of radius equal

to that of the "equivalent TNT charqew. With the equation of
state specified, the only remaining variable is the hydrortatic

pressure, which determines the "relative explosion intensity"

5 preaft8 t pige Weeuk



() discussed earlier. The equation of state data is in
graphical and tabular form and is therefore rather difficult 3
to use for calculations; consequently, only one case was
actually computed, corresponding to C - 3270. This value is
near the middle of the range of interest, and therefore the
relative deviations of the results from the cases described
earlier should be typical of that to be expected from explc- I
sions at nominal burst depths. The numerical results are (in

dimensionless form): i

A - 0.60481

- 1.1403

- 0.5304

B - 0.6198

The deviations of the "gamless" values obtained in section V
from the above are +2.5%, -0.5%, +0.8%, and +3.1% respectively;

that is, the gasless calculation tends to slightly overestimate
A, P, and B and to underestimate 6T, the bubble period. These

results for steam may also be compared with the ideal gas

results obtained in section VI. The deviation of the ideal gas
values from the steam valuez are shown in Figure 16 as functions I
of y, the ideal-gas adiabatic exponent. As can be seen, the
deviations in all four quantities are under lt for y between
about 1.29 and 1.38; the best overall value would appear to be
about 4/3. That is, for this case at least, the errors

involved in replacing the real steam equation of state with
an ideal gas with y - 4/3 are: I

-i

I
6T -0,14%
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A -

i

AB- -0.24%

T'he cunclution that must be dzawn is that the iaeal -

y treatment using y - 4/3 is an adequatc aFppoxixnation to the

rtal-.iteam equation Of staLe as far as the bubble dynamics is

ccncerned As will be seen later on, errors of this magnitude.

are entirely unimportant in comparison with other effects and

are, in fact, of about the saane ozder as tnnse introduced by

neglecting the in-ertial etfects of the bubblu atmosphere which, I
as has been shown, are insignificant.
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Vill . 15UMXL ATMOSPmn~hA

Sv fai. the bubbl i-,fr-r has _ee treated au if It

were homogeneous so that the internal pressure is independent

-of positicon within the bueiie. An was dircuaped previously,

this necessarily implies that the internal velocity distribu-

tion is given by:

u -R( for r < R (VIII-l)

at any time. In fact, however, it .tay easily be shown that the

bubble will not remain homogeneous, but that conditions within

the bubble will vary with position as well as with time. In

the high-euplosive case, the bubble may be roughly homogeneous

initially, but there is certainly no guarantee that it will

remain so; in the nuclear case, the bubble is markedly inrhomo-

geneous initially. Accordingly, in this section the effects

of bubble non-homogeneity will be examined in an approximate

way to determine the consequences as concerns the overall water

moLion. As before, the water outside the bubble is treated as

incompressible, but the actual detailed motion within the bubble
w~- wll -, tnken into account in d.rmininu ILu radius- Lime his-

tory.

The motion of the gas within the bubble comprises a

fully non-linear time-dependent problem in compressible s

dynamics and is therefore governed by Euler's equations:

+ - - (r'Pu) - 0 (VIII-2)
r

O(PU + P_
r* (r ul) + 0 (VIII-3)

*-wL--E;i + (r'PuE) + - (ruP) 0VII4

'_ _ _ T _

rr (VTII-4)



P f (,H) (VTI-5)

where

U - velocity

p - density

P = pressure
u 2

= total energy per unit mass + H
H = internal energy per unit mass

r = radius

t = time

Equations VIII-2 through VIII-4 represent, respectively,

the principles of mass, momentun, and energy conservation; equation
VIII-5 is the equation of state for the gas. To solve these equa-

tions, it is convenient to transform them to a Lagrangian formula-

tion (that is, coordinates which move with the flow, rather than j
remaining fixed in space). Also, as was seen in the preceeding I, i
section, an idcil-gas treatment of the bubble interior is adequate,

zna therefore the equation of state (VIII-5) is simply: I

P = (y-l)p)H

where y will be taken as 4/3.

The rebuiting system of equations must be solved sub-

ject to prescribed initial distributions of p, u, and H, and to

a boundary condition at tle bubble perimeter which matches the

incompressible external motion solved earlier and which may be

derived from the momentum equation (VI-15), which defines the
acceleration at the wall in terms of the locrl internal j ressure,

velocity, and gas density.

To solve the resulting system of equations a finite-

difference method was employed which is essentially the same as
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thaL deac-ibedi by tad_ er ja e 11967). The hydiodynamic code
is an expllcit forward-time Layiaugian finite-difference scheme

employing the Von Neuwann-Richtm er artificial viscosity technJ-

quo to avoid instabilities associated with cwipression waves.

Tht- dutail. of the method have been extensively desczibed by

Mader and will therefore not be repeated here. Two cases were

actually oalculated using this method; computer time limitations

precluded a more extensive investigation.

For the irst problem run, the bubble interior was

assumed to be initially homogeneous: p was taken as the same as
that of water, end the "explosion intersity" C was 3000. The

gaseous region within the bubble was divided into 100 Lagrangian

computLtional cells; as discussed above, the effects of the water

outsid( are taken into account by proper specification of the
boundary conditions at the bubble edge. Tue beginning of the

bubble expansion caused a rarefaction to form at the bubble

edge and to propagate toward the interior; the resulting pr3s-

sxre wave continued to oscillate between the bubble center

and bubkle edge throughout the rest of the motion. Several of
these interior pressure wave reverberations occurred during the i
firLt expansion, superimposed on the general overall pressure

decline. The integration was carried out through 15,000 compu-

tational steps, which required about 8 mi.iutes of CDC-6600

computer tinie. calculations were carried out well beyond the

point of maximum expansion and into the beginning of the

bubble collapse. Although the governing equations no longer

inply symmetry of the radius-time curve, the computed results

themselves are 3ymmetric to within small fractions of a ercent.
Accordingly, the bubble period was taken as just twice the
time to mhaxixnum expansion.

The maximum bubble radius in dimenslonless form

computed in thic way was slightly less than that obtained

assuming a homogeneous bobble atmosphere, since the kinetic

energy ox the bubble atmosphere did not fall to zero at the

maximnuni; the oscillating pressure disturbance mentioned above
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Wm Stll Present, A!Ltho,1h v4ery wriak. The dimensionless

results 1wh~ch cipsu ilbtd thi uubble radius-tirac rclation are
shown in the falinwing table, wiiclh also lists the corres-

pondinq values for the 'gamlemse Case and the y - 4/3 homo-
geneous ideal-gas model at the tme value of L, both with

and without gas inecrti al effects considered:

MODEL

Dynamic ideal Gas Ideal Gas
Bubble With without Gasle&5

REbdLT Tnterior Inertial Effects Inertial Effects Model

A 0.6053 0.6056 0.6056 0.620

6ST 1.1392 1.1394 1.1389 1.135

0.5314 0.5315 0.5317 0.547

B 0.6177 0.6178 0.6180 0.625

As can be seen, the consideration of the interior gaz3 dynamic'-

made virtually no difference to the results, and consequently

the horn;igeneous approximation appears to be quite adequate to

describe the notion. Although, in the dynamic calculation,

fairlv larqe pressure fluctuations around the mean value

occurred at the buibble boundary, a sufficient number of fluc-I

tuations occurred that the average overall effect was about1
the same as if there had been no such fluctuations.j

in the caee just discussed, however, the bubble was

assumed to~ be initially homogeneous. As was discussed earlier,

a nleyplogi.- would b- Axpacted to produce an "initial

bubble" that is non-homogeneous, that is, hotter and less

dense at the center than at. the edge. To evaluate the effect

of initial non-homogeneity of the bubble, the Rame Lagrangian

hydrodynamnic code was used as in the previous case, and all

input conditions were the same, except that for the innermost

fourth of the initial bubble radius, the density was set at

one-tenth of the previoua value and the internal energy per
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unit mass (which in proportional to temniperaturel w'ar multiplied
by ten. Fol the outex three-fourths, the initial conditions

were tre sane as in Lhe previous case.

The second problem was not carried out in tim- as far

as the first bubble maximirn, since the results even at early

times were essentially identical (as far as the bubble radius-

time relation was concerned) w.th those in the previous 7ase.

The deviation never exceeded 0,04% in magnitude, and declined

slowly toward zero as the computation went on. The computa-

tion was stopped at T - 0.17, at which time the bubble radluu

was 75% of the maximum value; at that point, the devation

in bubble radius between tha two cases had droppGd to 0.^27 .
The overall conclusion which must necessarily be reached from

both of these calculations is that the explicit treatment of

the bubble atmosphere dynamicb does not significantly alter
the results for the bubble radius-time relation from those

obtained using the homogeneous model discussed in section VI,
and that this is true regardless of the initial energy distri-

bution within the bubble.

631



IX. COMPA"ISONS WITH OTHER RESULTS

To evaluate the odequacy of the models discussod in

the preceedin-, sections, it is necessary to consider experi-

mental results. As was just shown, the effects upon the radius-

time relation of a non-homogeneous dynamic bubble interior are

extremely slight. Furthexmore, over the range of interest, the

effects of the deviations of real steam behavior front - 4/3

ideal gas behavior are unimportant, and the inertial effects of

the bubble atmosphere are likewise negligible. Of the various

models considered, only the results of the most primitive (that

is, the "qauless" model of section V) differ to any significant

extent from the rest, and even that case is generally within a

few percent of the others. The qeneral conclusion that must be

drawn is that the bubble motion is quite insensitive to the

behavior of the interior; that is, that the motion is dominated

by the water flow outside the bubble rather than that of the

gas inside.

In all cases considered, the water outside the bubble

was assumed to be ine -sibie. Tia i---' ji appro-
priate in view of the overall purpose of this investigation and a

has firther been shown by various plausibility arguments to be b

at least approximately correct except for short time periods very

near the bubble minimum. None the less, it is certainly worth-

while to determine the extent to which the ideal gas - incompres-

sible water model repreaents observed explosion bubble behavior. t

An enormous amount of experimental data has been

acquired over the years concerning underwater explosions. Even

so, precise measurements of the bubble motion are extremely

difficult to obtain. For large explosions in the field, the w

only bubble parameter which may be readily determined is the

period ot oscillation, that is, the time interval between Y

the emission of the primary shockwave and the "bubble pulse" a]
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pzrcsr.L.ra wajve tuititted ~rthe f Irst reiampressio;: For lhiq.h

excplosives tirAd deep er,z.j:h that the~ p tnice u.i thc fr-ee

surface does not significantly affect tile motion, the data m~ay

be correlated by axi empirical expression of the fcrn (Cole,

1948)

T (sec) - fw'i(h.)j / (IX-l) 112
where WT Is the charge weight in pounds, Z is the total hydro-j

static pressure measured in feet of water (that is, the depth

of burst plus 34 feet representing air press~ure), and X depends

upon the *.rticular type of explosive used. For TNT, for 1.15

examiple,

1.120

will predict observed bubble periods within a few percent over

a wide range of charge wbighth and burst depths. It the initial I6T
bubble energy for TNT is takeni as 47% of the total explosionF

energy (that is, the total miqu3 the observed 53% shockwave ! 1.05

is assumed to be 4.2 x 10 6 joules/kilogramns (see section II),

an~d vater density is taken as 1000 kgr' 3, equation (IX-2) may

be expressed in dimensionless form: 1.00

-1.126 /~E~3 / P56(IX-3)10

that is,

6r - 1.126 FIGt

which, as was shown in section VI (se* Figure 11), agrees quite

well with the values obtained from the hontogeneous ideal-gas

model. over the region of interest, the ideal gas resuY.ts for

Y -1.25 (the value sugge'ited by Say (1957) as being most

appropriate for TN'J2 are illustrated in Figure 17. The deviation
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FIGURE 17: COMPARISON OF THE "AVERAGE." EXPERIMENTAL

DIMENSIONLESS OSCILLATION PERIOD FOR TNT

WITH IDEAL GAS MOD)EL RESULTS
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over the range t 1000 to C - 30,000 (the region in which most

of the experimental data was acquired) is always les than 0.15%,

far less than the scatter in the expezimental data itself. 'his

r&'Thr remarkable aqreement between the ideal-gau results and
experimental measurements for TNT is probably somewhat fortui-

tous, but certainly indicates that the model can adequately re-

present experimental ?'esults for tha bubble oscillation period.

For nuclear explosions, experimental data is extremely

sparse. The only available direct measurement concerning nuclear

explosion bubble motion is the bubble period measured hydro-

acoustically at the 1955 WIGWAM test. Operation WIGWAM consisted

of the detonation of a 30 kiloton nuclear device (total energy

release 1.2 x 1014 joules) at a depth of 610 meters in very deep

water in the open sea. The first bubble pexiod was 2.88

seconds;if the fluid density is taken as 1025 kg,'m 3 (an "average"

value for seawater) and the initial bubble energy is taken as

40% of the total yield as discussed in section II, the dimension-

less bubble period is:

6T 1.137

which may be compared with the results of the y - 4/3 ideal-gas 1
model (see Fioure 18). The "reduced A-3losion Jntensity" r

for WIGWAM was taken as 500, based upon the ansumptioh of an

initial bubble energy density equal tf that of TNT. The devia-

tion between the two is about 1%, which is within the precision

of the WIGWAM oscillation period measurnment.

There are, of course, no meaurements of maximum bubble

radii for underwater nuclear explosions. Even for high explo-

siven, far los data exists for the bubble radius than for the

bubble period. What data iu available may, however, be corre-

lated by the .mpitical formula: I
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1/3
Rax( feet) J (IX-4)

which is analogous to the empirical equation for the bubble

period (IX-l). For TNT, J - 12.6 fits most of the available -

data within a te' percent. This observed result may be trans-

formed to non-dimensional form in the same way as was done with

the TNT bubble period; the result is:

A - 0.58

which may be compared with the ideal-gas model results using

y = 1.25 (see Figure 19). Again, the agreement is fairly good.

Many of the available meacuit:....... . bubble motion

were taken on a laboratory scale, using very tiny charges in

special test chambers in which the air pressure may be reduced j
to provide Froude scaling, that is, similitude of bubble buoy--

ancy effects (soe, for example, Snay, 3964; Pritchett, 1966).

The purpose of these tests was, in general, to simulate the

buoydnt bubble migrat!ion characteristics of large explosions.

For the present purpose, however, much of this data must be

regarded with some suspicion. The reason is that, at low I
ambient hydrostatic pressures, the local pressure in the water

near the bubble interface may drop below -or prazz:urc naar

bubble maxima and the surface of the bubble will then boil.

Figure 20 shows the pressure distribution in the water

for an explosion at r - 3000 and y - 4/3. The ideal-gas model

of section VI was used for this calculation, and the inartial

effects of the gas were neglected. The pressure distribution was

the,, obtained using equation V-12. As can be seen, at early

times, the pressure declinLns with increasinV distance, but once 1
the internal pressure drops below PH (the hydrostatic pressure), U

the point of lowest instantaneous pressure is directly adjacent

to the bubble interface. Thus, if the interior pressure at the

maximum predicted by this theory is leas than the water vapor 3
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FIGURE 20: PRLSSUjflV. DISTRIBUTION IN THE WATER SURROUNDING

THE B3UBBLE FOR VARIOUS TIMES AFTER BURST

(Ideal Gas Modell y 4/3 and =3000)
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pressure (which depends on temperature), the water at the bubble

boundary will begin to boil, increasing the amount of gas in
the bubble, its maximum size, and its period of oscillation. For
explosions at normal hydrostatic pressures (greater than one
atmosphere), of course, this effect does not occur. If the

water is cooled sufficlently, bubble boiling will not occur even

for hydrostatic pressures less than cne atmosphere. The hydro-
static pressure at which bubble boiling at the maximum would be
expected to begin as a function of water temperature is shown in

Figure 21. Thia result should, of course, be taken as fpproximat.;
it was darived usin; Uiu ) = 4/3 ideal gas bubble model assuming
an initial bubble energy density equal to that of TNT. Actually,

* Figure 21 is quite conservative; experimental results indicate

*that significant effects upon bubble behavior do not occur

unless hydrostatic pressures are about a faccor of four or so
smaller than indicated (Shay, 1964). The reason is simply that,
although the bubble interior pressure may drop slightly below

ve.por pressure a the bubble maximum, the amount of water actually

vaporized is fair .y small due to the i -ly short bubble
oscillation period, unless the interior pressure is well below L

vapor pressure foi a substantial part of the oscillation cycle.

I
A numbez of experiments using the "vacuum tank techni-

que" were performed at the Naval Radiological Defense Laboratory

during the eatly 1960;s using a very high energy density elec-
trically exploded metallic wire as the energy source (Buntzen,

1964; Pritchett, 1966). Such an explosion producer no permanent
V gases, and therefore the steam bubble generated is similar to

that of an underwater nuclear explosion (Bunteen, 1961). Some
of theme tests occurred in the "danger zone" in which the bubble

boiling might be expected, of those which were not, however, the

bubble radii and oscillation periods, as measured by high-speed

photography, agree fairly well with results predicted using the

ideal-gas model. The scatter in this data was, however, con-
siderable; due to the small size of the explosions, bubble periods
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were of order a few tens of milliseconds and bubble radii were

typically only a few centimeters. Furthermore, trht total

explosion energy wad difficult to reproduce, and could only be

deternined within 10% or so. None the less, these results also
tend to support the ideal-gas model for bubble pulsation.

Other measurements than the maximum radius and bubble
period have, of cource, been made. The scatter in the measured

results is considerable, however, due to the great difficulty
in experimentally de.ermining the bubble radius-time rtlation.
The radius-time curve computed using the ideal-gas model falls

well within the band of experimental scatter. Measurement of
subtle parameters such as B(the "shape factor') would of c%. .ue

be extremely difficult, and has never been attunpted, to the d

author's knowledge. The "characteristic velocity" V, on the
other hand, may be determined if the bubble maximum radius and

oscillation period are known. The "average" value which may be

derived from the empirical TNT equations (IX-2 and IX-4) is 0.51,

which falls in the middle of the range of values derived from the

Ideal gas model. As has been pointed out by Snay (1960) and

others, although the empirical coefficients J nd K depend

upon exploiive type, the ratio J/K .- relatively constant at

about 2.9 within a few percent, which implies v - 0.51.

As has been seen, the available experimental data, while

generally verifying the present results which assume incompres-

sible water, are sufficiently scattered that precise comparisons

are simply not possible. In recent yearn, a few theoretical

calculations of one-dimensional bubble motion which include the

effect of water compressibility have appeared in the literature.
Two of these (Kot, 1964 and Bjork, Kreyenhagen and Wagner, 1969)

involved nuclear explosions, and two others, (Phillips and Snay,

1968 and Mader, 1971) represented smaller conventional explosions.

Kot considered thrae cass, all one=kiloton nuclear explosions

at burst depths of 91, 305: and 610 meters. The equation of
state data used war, regrettably, rather primitive. Djork, et.
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al. considered only one case -- a 10 kiloton nuclear explosion

at 1830 meters. Unfc:tunately, the one-dimensional calculation

was terminated at 6.9 microseconds; a relatively poorly-resolved

two-dimensional method was used thereafter, but even this cal-

culation ended at 140 milliseconds, so that the bubble never

ieoched its first maximum. Phillips and Snay report the results

of five calculations of one-pound TNT explosions at burst depths

of 24, 152, 305, 4220 and 6822 meters. Mader's results repre-

sent the explosions of half-pound spherical Tetryl charges (a

conventional high explosive similar in characteristics to TNT)

at hydrostatic pressures corresponding to burst depths of 89,

735, 4'10 and 46,600 mo-ters. In reality, of course, the average 4

depth of the ocean is only about 4000 meters and the deepest

point is about 11,000 meters (at the bottom of the Mindanao

Trench) so Mader's deepest case must be regarded as somewhat

hypothetical. The range of depths of interest for underwater

explosions generally does not extend below 1000 meters or so.

The maximum bubble radii reported by Kot, Phillips

and Snay, and Mader (excluding his deepest case which is off-

scale) are shown in dimensionless form as functions of the j
relative explosio:> intensity r in Figure 22. Also shown are

th._ results of the ideal gas model neglecting gas inertial

effects for y ranging from 1,15 to 1.40. The scatter in the

"band" of compressible -water computational results is about

10%, but, as can be seen, the overall agreement is fairly good.

Siwdiarly, the results of Kot, Phillips and Snay, and Mader

for the "characteristic velocity" v( - A/6T) are compared w~th

the ideal-gas-model results in Figure 23. Also included is

the result of an earlier calculation by Keller and Kolodner

(1953) in which the water was considered compressible, but the

bubble interior was treated an a homogeneous ideal gas with I
y - 1.25. Once again, the agreement of the data with the

incompressible results appear as good an the agreement between

one set of data and another.
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Although both the experimental measurements discua'sed

earlier and the theorGtical results which include tho effect.

of water ccmpressibility tend to agree with the incompressible-

water calculations, the scatter in both is sufficiently great

that no clear choice bnaed upon these results alone can be rado

among the vaijous models discussed in the previous sections. The

ideal-gas model results agree quite well wi.h experiments and with

the compressiblw-water calculations and, as has been shown,

further elaboration of that model (to include gas inertial

effects, real--steam behavior, anC/or bubble inhomigeitity)

alters the results obtained by only fractions of a peicer.t.

The dEiations of the ideal-gas incompressible-water model

results from compressible-water calculations and from experi-

mental measurements are at least as great as the "improvement"

that could in principle be obtained by using a more elaborate

model for the bubble interior.

It is theretore recommended that the ideal qas model

neglecting gas inertial effects be adopted for the purpose of

making incompressible-water calculations of bubble motion. The
additional complications introduced by using a mere complex

model are simply not warranted in v!.ew of the very slight gain

in accuracy, particilarly since the assumption of incompressible

water itself introduces errors of at least comparable size. As

e.los. so , , ti,-- -V1, fo -to- bubbles produced by nuclear
explosions, y - 4/3 seems to agree beat with the real-Lteam

results; for h.gh-explosive calcul&tions, a somewhat lower value

(such as 1.25) should probably be used.
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APPENDIX A: SYMBOLS AND ABBREVIATIONS

A instantaneous bubble surface area

JB "shape factor" for bubble oscillation cycle -

I R ' d t )  / (P a T)

C speed of sound in water

Cdet detonation wave speed within the explosive

j E total energy per unit mass- u2 + H

E bu-ble oscillation energy

IE I  internal energy of bubble atmosphere

EI  initial Dubl e internal energy
0

E K  kinetic energy

EKG kinetic energy of bubble atmosphere

E KW kinetic energy of the water outside the bubble

Fb buoyant force
!b

g acceleration of gravity

H internal energy per unit mass

I buoyant momentum

I* dimensionless buoyant momentum

I J empirical "radius coefficient"

K empirical "period coefficient"

M Mach number

P pressure

P0  initial bubble pressure

I B bubble pressure

PH hydrostatic pressure

Q chemical energy released per unit explosive mass
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r radial coordinate

P instantaneous bubble radius

P instantaneous bubble interface velocity

Pinszantaneous bubble intertace acceleration

R initial bubble radius -I

R maximum bubbl.e radius

t time jI
t reaction time of explosive charge

T bubble oscillation period

u velocity;.I
U characteristic velocity for bubble oscillation

V bubble volume

VO  initial bubble volume II
W work done against external forces

WT charge weight measured in pounds

Y yield; total explosion energy

7 axial coordinate variable

7 hydrostatic pressure (PH) measured in feet cf water I
6T dimensionless bubble oscillation period

ideal-gas adiabatic exponent (ratio of specific heats) I
X dimensionless instantaneous bubble radius I

dimensionless instantaneous bubble interface velocity

dimensionless initial bubble radius

A dimensionless maximum bubble radius

dimensionless bubble oscillation characteristic velocity I
(A/6T)

8



IT 3.14159255...

JP density

PE explosive packing densLtyj initial bubble density

P pg instantaneous bubble initerior density

PW water density

T d~imensionless time

dimensionless explosion "intensity"I.
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